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Introduction

The electron localization function (ELF) originally defined
by Becke and Edgecombe[1] for a Hartree–Fock (HF) wave-
function has proven to be a valuable quantum mechanical
tool for bonding analysis in position space. One drawback to
its use has been the unknown physical content of this func-
tion as it has been defined in axiomatic manner employing
an arbitrary division of the position-dependent, spherically
averaged conditional pair probability density by that of a
reference model system, namely, the free electron gas. An-
other problem, in fact connected with the first one, is the
difficulty of uniquely defining the ELF at a correlated level
of theory. Recently, a functional termed the electron localiz-
ability indicator[2] (ELI) was derived directly from the elec-
tron-pair density without any reference system using a novel
scheme that can be generalized to yield the restricted popu-
lations approach.[3] The ELI was initially designed to depict
the position-dependent fraction of a same-spin electron pair
per fixed, sufficiently small charge enclosed in compact re-
gions (micro-cells) in space and was therefore denoted as
ELI-q. In the meantime another variant of the ELI, named
ELI-D, which depicts the average number of electrons per

fixed fraction of a same-spin electron pair, was derived and
applied in momentum space.[4,5] Being quite generally de-
fined for the correlated pair density of a time-dependent
many-body wavefunction for the case of a time-independent
single-determinantal wavefunction, the ELI-D formally sim-
plifies to the inverse of the relevant kernel of the ELF. For
this reason it has an identical topology to the ELF. Howev-
er, the ELI-D should not be considered as a generalization
of the ELF formula, but a separate though related quantity
that represents one possible physical interpretation of the
ELF kernel at a correlated level of theory. Other physical
interpretations of the ELF kernel may lead to different ex-
pressions at a correlated level of theory.[6] Adopting the
ELI-D interpretation of the ELF kernel gives rise to both
1) new concepts on how to work with it as well as 2) strict
limitations of applicability beyond which the physical con-
tent will be lost.
In this contribution we will elaborate the method for orbi-

tal decomposition of the ELI-D in direct space. The orbital
concept is widely used in chemistry and physics and orbital
decomposition of the ELI-D will enable a bridge to be built
between the Hilbert and direct space representations of the
chemical bond.

Charge decomposition of the ELI-D

In the following, the basic theory underlying the definition
of the ELI-D is briefly reviewed in order to familiarize the
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reader with its basic concepts. This will lead to the decisive
equation [Eq. (11)] with the mathematically exact orbital-re-
solved definition of the ELI-D applicable to molecules and
solids at both the single-determinantal and the explicitly cor-
related level of theory. For the detailed derivation, a refer-
ence to the original work is given at each necessary place. In
a subsequent step we discuss why within the framework of
the ELF and the spin-pair composition function such a pro-
cedure would be incompatible with the basic ideas behind
them (see Appendix).
Previously, the electron localizability indicator ELI-q,[2] a

functional in position and in momentum space,[4,5] was de-
rived directly from the same-spin pair density such that it is
defined at a wavefunction-based fully correlated level of
theory as well.[6] The method used can be generalized to
yield the so-called restricted populations approach.[3] Within
this method two different position-dependent properties,
generally called the control and the sampling properties, are
interconnected. The control property forms the basis for
partitioning of space into compact, mutually exclusive and
space-filling micro-cells with variable volumes. The volumes
of the micro-cells can be considered a response of the
system to the so-called w-restriction: the scalar control
quantity w, that is, the integrated value of the position-de-
pendent control property, is restricted to have a fixed value
for all micro-cells. The sampling property is then integrated
within each of these micro-cells giving rise to a discrete dis-
tribution of the sampling quantity. The electron density 1(r)
and the same-spin pair density 12

ss
ACHTUNGTRENNUNG(r1,r2) are the two proper-

ties interconnected by the ELI in position space. The two
different aspects of the ELI arise from the freedom to ex-
change the control and sampling property without changing
the basic content of the ELI functional. Thus, the control
quantity can be either the charge q or the number of same-
spin electron pairs Dss. The sampling quantity is then the
other quantity. This forms the basis of the discrete distribu-
tion U s

w, where the subscript denotes the control quantity w

used for the restriction and the superscript denotes the spin
of the sampling property. The two aspects of the ELI,
namely ELI-q U s

q and ELI-D U s
D, represent discrete distribu-

tions in real (i.e., momentum) space whose local values are
proportional to the respective values of the sampling quanti-
ty (see below).
For the charge decomposition analysis the ELI-D is the

decisive functional. It has already been explicitly derived in
momentum space by Kohout et al.[4] Since the principal
equations in position space are in a very simple 1:1 fashion
related to those in momentum space (i.e., a change of the
space coordinate from momentum p to position r and mo-
mentum density p(p) corresponds to electron density 1(r)),
there is no need to explicitly repeat the whole derivation for
the ELI-D in position space.
The ELI-D is obtained by imposing the restriction of an

infinitesimally small fraction of a same-spin electron pair
Dss in each micro-cell. This gives rise to a discrete, quasi-
continuous distribution of positions {a1, a2, …, aM} at which
such micro-cells are centered. In each micro-cell the (varia-

ble) charge Qi is determined (not to be intermixed with the
fixed charge q used in q-restricted partitioning in the ELI-
q), which yields the corresponding discrete distribution of
charges {Q1, Q2, …, QM}. The ELI-D is a discrete distribu-
tion of values {U s

D(a1), U
s
D(a2), …, U

s
D(aM)} proportional to

the corresponding charges Qi.
Of course, the charge Qi and the number of same-spin

electron pairs Dss are given as the respective integral of the
electron density 1(r) and the same-spin pair density 1ss

2 ACHTUNGTRENNUNG(r1,r2)
over the given micro-cell volume. Fortunately these integrals
need not be calculated explicitly.[2] Instead, in the actual cal-
culations an approximation is used to determine the inte-
grals: for a very small micro-cell volume Vi the s spin
charge Qs

i can be approximated by Equation (1).

Qs
i � 1sðaiÞVi ð1Þ

Furthermore, the number of same-spin pairs Dss in Vi is ap-
proximated[2] using the Taylor expansion to yield Equa-
tion (2)

Dss � 1
12
Vi

8=3gðaiÞ ð2Þ

with the Fermi hole curvature[6,7] g(ai) at position ai. From
Equation (2) the expression for volume Vi is obtained
[Eq. (3); Dss is the control quantity, i.e., it has a fixed
value].

Vi �
�
12Dss

gðaiÞ

�3=8

ð3Þ

Inserting Equation (3) into Equation (1) yields Equation (4).

Qs
i � ðDssÞ3=81ðaiÞ

�
12
gðaiÞ

�3=8

ð4Þ

ELI-D is defined in such a way as to give Equation (5).

Qs
i ¼ ðDssÞ3=8U s

DðaiÞ ð5Þ

Since Dss is given a fixed value for all systems, the ELI-D is
proportional to the charge Qs

i within each micro-cell
[Eq. (6)].

U s
DðaiÞ ¼

Qs
i

ðDssÞ3=8 � 1ðaiÞ
Vi

ðDssÞ3=8 ¼ 1ðaiÞ ~VDðaiÞ ð6Þ

From the first equality the ELI-D can be seen to be propor-
tional to the charge (average number of electrons) given by
Qs
i which is needed to form a fixed fraction Dss of a same-

spin electron pair. The scaled volumes ṼD(ai) are termed the
pair-volume distribution.
As already mentioned, the ELI-D represents a quasicon-

tinuous distribution. For infinitesimally small values of the
control quantity Dss this distribution will be so dense that
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for convenience the discrete positions can be regarded as
continuous [Eq. (7)] and U s

D(r) can be expressed as the prod-
uct of the electron density with the pair-volume function
ṼD(r) [Eq. (8)].

U s
DðaiÞjDss!0 ! U s

DðrÞ ð7Þ

U s
DðrÞ ¼ 1ðrÞ ~VDðrÞ ¼ 1ðrÞ

�
12
gðrÞ

�3=8

ð8Þ

For the sake of completeness we note that there is a non-
trivial relation between the ELI-D and the ELI-q[3]

[Eq. (9)].

U s
DðrÞ ¼

�
1

U s
q ðrÞ

�3=8

ð9Þ

Note, within the framework of the restricted populations
approach the electron density 1(r) itself can also be inter-
preted as a discrete quasi-continuous charge distribution
[Eq. (10)] with the volumes V(ai) of the micro-cells centered
at ai fixed at a constant value Vconst. throughout space. In
other words, the charge density at each point is interpreted
as the number of electrons per fixed volume. Furthermore,
as the volumes are chosen to be non-overlapping and space-
filling, the charge distribution fulfils the law of charge con-
servation: the sum over all q(ai) gives the total number of
electrons.

qðaiÞ � 1ðaiÞVðaiÞ ¼ 1ðaiÞVconst: ð10Þ

The topological analysis of the electron density 1(r) for
the definition of atoms-in-molecules was introduced by
Bader.[8] To define the elements of chemical bonding in posi-
tion space—bonds and lone pairs, atomic core shells and the
valence shell—it is proposed that the topology of a different
kind of charge distribution should be analyzed, namely the
charges Qs

i per fixed fraction D
ss of the same-spin electron

pair, that is, the ELI-D. Taking the point of view that the
isotopological ELF is in a certain sense related to the time-
independent HF approximation of the ELI, it has already
proven its usefulness in many studies since 1990, the birth
date of the ELF.[1] Beyond that, the use of the ELI-D now
opens up the possibility of exactly decomposing the total
ELI-D into additive positive contributions in the same way
that the electron density can be decomposed [Eq. (11)].

U s
DðrÞ ¼

Xocc:
l

1s,lðrÞ
�
12
gðrÞ

�3=8

¼
Xocc:
l

1s,lðrÞ ~VDðrÞ ¼
X
l

U s
D,lðrÞ

ð11Þ

This makes possible the decomposition of the ELI-D into
contributions 1s,l from, for example, 1) canonical or local-
ized orbitals or orbital sets, 2) a and b spin channels (spin-
polarized calculations), 3) natural orbitals (correlated wave-

functions), 4) (partial) k-summed energy bands (for solids),
and 5) Wannier functions (for solids).
In this contribution we will restrict ourselves to the orbital

decomposition of the ELI-D for molecules. In the following
the orbital contributions U s

D,l to the total ELI-D will be de-
noted as the “partial ELI-D” (pELI-D) contributions.
The significance of the pELI-D contributions is clarified

by the following: it monitors the portion of charge that a se-
lected orbital contributes to the total charge contained in
each micro-cell enclosing the same (fixed) fraction of a
same-spin electron pair. The topology of the pELI-D contri-
butions can be regarded as arising from the product of the
orbital density and a position-dependent weighting factor,
that is, the pair-volume function, which is inversely propor-
tional to the Fermi hole curvature g(r)

3=8.
To show the usefulness of our definition of the pELI-D

contributions we present in the Results section a few illus-
trative examples and analyses.
In view of the explicit derivation of the ELI-D from the

electron-pair density, application of the ELI-D is strictly jus-
tified within wavefunction-based theories, that is, HF and
post-HF methods such as the complete active space (CAS)
and configuration interaction (CI) methods. Therefore, for
all examples discussed below we applied the HF method.
From a less puristic and more pragmatic point of view calcu-
lation of the ELI-D from Kohn–Sham orbitals within the
framework of DFT can be justified only through the quality
of the results. We therefore additionally calculated for all
examples the ELI-D from the “Kohn–Sham determinantal
wavefunction”,[9] that is, the Slater determinant constructed
from occupied Kohn–Sham orbitals. Besides some minor
quantitative differences, the results of the HF and DFT cal-
culations are found to be qualitatively the same for all but
one example, namely F2. For this molecule, which is known
to be badly represented at the HF level, HF and DFT give
slightly different ELI-D topologies for the bonding region.
To make a decision as to the correct topology, a qualitative-
ly better wavefunction from a CAS calculation was used
which corroborated the DFT result. Although this finding
cannot be easily generalized, it shows that the ELI-D calcu-
lated from Kohn–Sham orbitals should be considered to be
at least on a similar level in terms of quality as the HF one.
In order to decide on the correct topology in situations in
which different topologies were given by the two methods, a
definitively better wavefunction-based correlated calculation
has to be used. In the examples given below, if not stated
otherwise, the HF results are explicitly depicted and dis-
cussed.

Methods

The electronic structure calculations at the HF level were performed
with the MOLPRO program system[10] and the ones at the CAS level
with the MOLCAS program system [11] using implemented all-electron
valence triple-zeta basis sets with two sets of polarization functions
(named cc-pvtz). The electronic structure calculations at the DFT level
were performed with the ADF program system[12] at the generalized gra-
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dient approximated level of density functional theory using BeckePs ex-
change energy functional[13] and Lee, Yang and ParrPs correlation energy
functional.[14] All-electron basis sets, in which all electrons were kept un-
frozen, of at least triple-zeta quality with two sets of polarization func-
tions (named TZ2P) from the internal library of ADF were used
throughout. The results were checked for basis set convergence.

From the HF, Kohn–Sham and CAS wavefunctions obtained the ELI-D
and pELI-D contributions were calculated on equidistant grids using the
DGrid program,[15] which took maximally 1 hour for each diagram pre-
sented.

Results

In the following, use of the bare functional U s
D(r) without

ELF-like Lorentzian scaling is advocated as it represents the
additive quantity. In fact there is even no need for scaling in
graphic applications as the values of the ELI-D in the core
regions are typically in the range 0�U s

D�10, whereas the

valence region typically displays values within the range
0�U s

D�2 (with the exception of hydrogen atoms, since for
protons the core and valence region is identical).

Argon atom : As the simplest example we chose the repre-
sentation of the atomic shell structure in position space of
the argon atom given by the total ELI-D in a simple U s

D(r)
versus j r j plot (Figure 1a). Note, the shell-like topology is
not depicted by each of its separate ingredients, that is, the
electron density and the pair-volume function. For an atom,
the size of the pair volumes monotonically increases with
radius r= j r j as the curvature of the Fermi hole decreases
with r.[16] This is due to the limiting behavior of the charge
density: at large r a single orbital completely dominates
(ionization potential) resulting in vanishing same-spin prob-
ability density. Thus, the ELI-D obtains its specific shell-
structure shape for an atomic system from the local product
of two monotonic but counter-current functions, 1 and ṼD.

Figure 1. Argon atom: a) radial dependence of the ELI-D, electron density and scaled pair-volume function; b) radial dependency of the ELI-D and orbi-
tal densities; c–e) genuine pELI-D contributions and radial orbital density P(r) for the first (c), second (d), and third (e) atomic shell.
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The first atomic shell consists of a sphere centered at the nu-
clear position at which the radius r1s is determined by the
position of the first minimum of the ELI-D along r. The
second shell represents an onion-like-shaped region between
two consecutive minima of the ELI-D. The outermost shell
extends to an infinite radius. The orbital density contribu-
tions are displayed in Figure 1b in a 1i(r) versus j r j plot. It
can be clearly seen that the genuine canonical orbitals for a
certain shell (the genuine orbitals for the nth shell are those
with the same main quantum number n) in direct space are
not confined to that region, which introduces losses in the
electron count for that shell. These losses are compensated
by contributions from genuine orbitals of other shells. From
an orbital point of view, quantitative shell structure in direct
space is due to nearly exact compensation of genuine losses
and non-genuine gains of charge contributions within each
spatial shell.[17] The orbital and total charge contributions in
spherical shells can be displayed along a radial line using
the radial charge distribution P(r)=4pr21̄(r), with 1̄(r) being
the spherically averaged charge density in which the two an-
gular components (polar coordinates representation) have
been integrated out. The integral of P(r) between two radial
positions r1 and r2 directly yields the number of electrons in
the enclosed spherical shell region. A comparison of the
total and orbital-resolved radial charge distributions with
the corresponding total ELI-D and pELI-D can be found in
Figure 1c–e. At each point the two orbital-resolved quanti-
ties add up to the corresponding total quantity. Use of the
summed pELI-D contributions of all the valence orbitals
represents a natural and controllable way to define an ap-
proximate valence-only ELI-D (cf. Figure 1e). Furthermore,
it can be seen that the radial total and orbital-resolved
charge distributions for argon have similar topologies to the
total ELI-D and pELI-D contributions. Although for the
lighter elements up to argon the atomic shell structure is
qualitatively represented by P(r), this function starts to fail
beyond argon. In contrast, the ELF, and therefore the ELI
in the single-determinantal approximation as well, displays
the atomic shell structure even quantitatively at least up to
xenon.[17,18] From Figure 1c–e it may be tempting at first
glance to assume for U s

D(r) and P(r) a similar kind of con-
struction principle to define a weighting scheme for the
charge density, but this is not the case. Whereas U s

D(r) repre-
sents a three-dimensional distribution of charges in compact
regions, P(r) represents a one-dimensional distribution of
charges within spherical regions. For this reason, the con-
struction principle of the radial charge distribution is not
transferable to non-spherical systems. In this context the re-
stricted populations approach offers a concept of space par-
titioning to create physically motivated weighting schemes,
for example, for charge density in the case of the ELI-D.

pELI-D contributions of canonical orbitals—N2 and F2 :
Before discussing the ELI-D and pELI-D contributions, a
comparison of the same-spin pair volume functions for the
isolated atoms and the dimeric molecules is useful. As dis-
cussed in the previous paragraph, the pair volume function

for an isolated atom displays a monotonic increase with r
and the question arises, what happens for a dimeric mole-
cule? As can be seen in Figure 2a the pair volume function
displays a (3,+1) saddle point at the midpoint of the inter-
nuclear line, that is, it is maximal along the internuclear line
(one negative curvature), but minimal (two positive curva-
tures) perpendicular to it.
The ELI representation of the N2 molecule displays one

core attractor for each nitrogen atom, a common valence
region with an attractor between the nitrogen atom cores
and two other attractors located at the opposite sides of the
N�N contact (Figure 2b).
The core regions of both nitrogen atoms are mainly com-

posed of in-phase (1sg) and out-of-phase (1su) combinations
of the 1s orbitals, giving only small pELI-D contributions in
the valence region (Figure 3). For topological reasons the at-
tractors in the valence region have been interpreted as
bonding and lone-pair attractors, respectively. This is fully
consistent with the pELI-D analysis (Figure 3): the ELI-D
value for the bonding attractor is created from two bonding
orbitals, the 2sg and 3sg orbitals, whose pELI-D contribu-
tions indicate an attractor between the nitrogen atoms. In
contrast, the orbital electron density between the nitrogen
atoms is maximal along the line (in total a (3,�3) attractor)
only for the 2sg orbital, but not for the 3sg orbital, for which
it is minimal along the line with a (3,�1) saddle point in
total.

Figure 2. Molecule N2: a) pair volume function; b) total ELI-D, repre-
sented by color coding; black contour lines depict the total electron den-
sity.
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The ELI-D attractor value of the lone pair is also com-
posed of two canonical orbital contributions, the 2su and 3sg
orbitals, which both display an attractor of pELI-D close to

the total ELI-D lone-pair attractor. Thus, canonical orbital
3sg provides sizable pELI-D contributions for both types of
valence attractors, and its topology displays both attractors.

Figure 3. N2 molecule with atoms at (0,0,	z’), p orbitals (above), and s orbitals (below). From left to right: canonical orbital schemes, 2D orbital densi-
ties and 1D plots of the pELI-D contributions and corresponding orbital densities along the internuclear line (s orbitals) or perpendicular to it (p orbi-
tals).
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Of course, in this simple case similar conclusions can be
drawn from an analysis of the canonical orbitals using well-
established arguments of second-order mixing between
nominal 2s (2sg) and 2pz (3sg) bonding orbitals. However,
having looked at all the occupied orbitals there is still no
picture about what the total wavefunction will look like be-
cause the orbitals do not add up to give the wavefunction: it
is the orbital densities that add up to give the total electron
density. The point to be made here is that the final result of
a one-by-one orbital analysis does not give any idea about
the total wavefunction and its chemical bonding properties.
In contrast, the pELI-D contributions simply add up to give
the total ELI-D with no negative contributions. The chemi-
cal bonding scenario present in an ELI-D distribution can
be easily understood in terms of the constituting orbital
pELI-D contributions, which themselves can be reconstruct-
ed from the orbital densities and the shape of the weighting
pair volume function.
It is now interesting to analyze why no separate attractor

for the p-type interaction is found in the ELI-D (and in the
ELF) representation of N2. Analysis of the pELI-D along a
line running perpendicular to the internuclear line and cut-
ting the bond midpoint (Figure 3, top) clearly shows that the
1pu orbitals indeed produce a pELI-D attractor displaced
from the bond midpoint, that is, a ring attractor, in this case
of cylindrical symmetry, of the molecule. However, the sum
of the pELI-D contributions from the 2sg and 3sg orbitals is
greater at the bond midpoint than at the p-type attractor
position and, therefore, this pELI-D attractor is concealed
in the total ELI-D (Figure 4a–c). As pELI-D contributions
are always positive this is a representative example of the
general mechanism, how pELI-D topologies can be con-
cealed in the total ELI-D. As an indication of such a scenar-
io, it should be noted that at the bond midpoint the absolute
value of the curvature of the total ELI-D in a perpendicular
direction is much reduced compared with the constituent
pELI-Ds (see Figure 4d). Thus, from a purely topological
point of view this situation is not too far from topological in-
stability. Although results from highly correlated calcula-
tions indicate that N2 will keep its ELI-D topology, it would
not be surprising if an isoelectronic molecule displayed a
ring attractor instead, and, indeed, this scenario occurs with
acetylene.
On proceeding to F2, it is instructive to analyze how the

subsequent filling of antibonding orbitals changes the topol-
ogy of the ELI-D. For F2 the p-antibonding orbitals (1pg)
are completely filled such that in the simple MO picture the
single bond survives. The ELI-D (and the ELF) computed
from the HF wavefunction displays a single attractor at the
bond midpoint, whereas the ELI-D (and the ELF) from the
DFT calculation displays a shallow two-attractor structure
between the atoms (Figure 5a). Although at first glance
these results look like quite different, a closer look at the
curvature of the ELI-D (HF) at the bond midpoint reveals
that the attractor is extremely flat having nearly zero curva-
ture along the internuclear line (Figure 5b). This scenario is
caused by the significant two-attractor structure of 2su

pELI-D contributions, which are just concealed by the
slightly prevailing single-attractor pELI-D contributions of
3sg, whereas 2sg is already quite flat (Figure 5b). The pELI-
D contributions of the DFT orbitals (not shown) are qualita-
tively similar, but the 3sg pELI-D contributions are not
dominant enough along the internuclear line to completely
conceal the 2su two-attractor structure and it survives in the
total ELI-D (and in the ELF). The decision about which of
the two ELI-D topologies is the correct one can be made on
the basis of a definitively better wavefunction. It is already
known that a completely active space (CAS) calculation for

Figure 4. Molecule N2: 2D pELI-D orbital contributions in combined
height field/color code representation for a) 1pu, b) the sum of 2sg+
2su+3sg contributions, c) the sum of 1pu+2sg+2su+3sg contributions,
and d) 1D pELI-D orbital contributions along a line cutting the bond
midpoint and running perpendicular to the internuclear line.
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Figure 5. F2 molecule with atoms at (0,0,	z’): a) the total ELI-D (from different wavefunctions) depicted by color coding in the molecular plane. The
two-attractor structure is barely visible and therefore marked by red crosses; black contour lines depict total electron density. b) Left to right: canonical
orbital diagrams, orbital densities and 1D pELI-D and density contributions of s orbitals along the internuclear line (HF wavefunction). c) Natural orbi-
tal pELI-D contributions from CAS calculation.
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F2 using all 14 valence electrons within eight active orbitals
(i.e., the s*pz-antibonding 3su natural orbital is allowed to
become fractionally occupied at the expense of the initially
completely filled ones) displays the two-attractor feature in
the ELI.[6] As this result is also consistent with results ob-
tained at higher correlated levels (MRCI-SD) we restrict
our discussion here to the ELI-D calculated from the initial
CASACHTUNGTRENNUNG(14,8) wavefunction.[6] In this case the pELI-D orbital
density contributions are computed from the natural orbitals
(Figure 5b) which are allowed to have fractional occupation
numbers. Indeed, 3su is populated by 6% and mainly the
3sg orbital is getting depopulated. As a result the pELI-D
contributions from 3sg are no longer dominant enough to
conceal the two-attractor pELI-D structure from 2su along
the internuclear line. Additionally, the 3su pELI-D contribu-
tions also display a two-attractor structure. As a result a bi-
furcated attractor[6] between the fluorine atoms is obtained,
which is consistent with a weakened bond scenario in accord
with its relatively low dissociation energy.
N2 and F2 have different topologies along the internuclear

line even though the same orbitals contribute to this line be-
cause the additional 1pg orbitals have a nodal line there.
The different ELI topologies along the internuclear line can
be traced back to the different orbital densities because the
respective pair volume functions are quite similar. However,
use of just the orbital densities for bonding analysis would
not be feasible as there has to be a measure that allows ex-
traction of the significant differences. This is achieved
through the weighting pair volume function that defines the
pELI-D contributions and the ELI-D in total. As discussed
above, the observed two-attractor feature of the ELI for F2
is clearly caused by the orbital density of the s antibonding
orbital 2su (Figure 5b). The reason for this is the mainly 2s–
2s antibonding nature of this orbital which has fewer admix-
tures of 2pz contributions than N2. Compared with N2 this
leads to significantly smaller pELI-D contributions to the
lone-pair region and to a pELI-D topology between the
atoms dominated by the 2s–2s orbital combination. For N2

the orbital mixing between the nominal s and p orbitals is
stronger owing to a smaller energy difference and thus the
sizable admixture of 2pz character in the 2su orbital largely
cancels the 2s–2s character between the atoms and the two-
attractor feature of the 2su pELI-D does not occur in the
total ELI-D (Figure 3).
Turning to the p orbitals it can also be seen that the

pELI-D contributions of the bonding 1pu orbitals have a dif-
ferent topology for F2 compared with N2. They are repre-
sented by two symmetrical ring attractors (Figure 6b) and
not just one surrounding the midpoint of the internuclear
line as for N2 (Figure 4a). Thus, the combination of the
bonding and antibonding p orbital pELI-D contributions re-
sults in a deep and rather flat valley between the atoms and
rather pronounced ring attractors approximately surround-
ing each atomic core (Figure 6c). This has consequences for
the representation of the lone-pair region, which is different
for N2 and F2. Although in N2 the location of the lone-pair
attractor was determined by s contributions, the ELI topol-

ogy of the lone-pair region for F2 was finally determined by
the p orbitals which effectively conceal the smaller contribu-
tions of the s orbitals away from the internuclear line (Fig-
ure 6d). As a result, the lone-pair feature is represented by
two ring attractors located slightly on the bond-opposed
side of the molecule (Figure 6e).

pELI-D contributions of localized orbitals—C2H4 and C6H6 :
The C�C double bond for ethylene is represented by two
equivalent ELI-D (and ELF) attractors above and below

Figure 6. Molecule F2: formation of lone-pair regions due to p orbital
dominance. Combined height field/color code visualization of the pELI-
D contributions in the molecular plane for a) p*, b) p, c) sum of p+p*,
d) comparison between total s-type (red) and p-type contributions, and
e) the ELI-D for all valence orbitals.
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the molecular plane (Figure 7a) and not by separate s- and
p-type attractors, as may be expected from canonical molec-
ular orbitals. The pELI-D and orbital density contributions
of the canonical sp and pp bonding orbitals 3ag and 1b1u are
represented in Figure 7b,c. It can be seen that the pELI-D
topology displays the expected bonding features consistent
with the orbital diagram, but not until all contributions of
the canonical orbitals have been added can the final topolo-

gy in certain regions of space be obtained. For this purpose,
localized orbitals can be utilized instead of the canonical
ones. However, within the framework of localized orbitals,
some orbital localization schemes (e.g., Foster–Boys locali-
zation[19]) display the so-called “banana bond” representa-
tion, that is, two similar localized orbitals for the C�C bond,
whereas others display s–p separation (Edmiston–Rueden-
berg localization[20]). The classical orbital localization proce-
dures correspond to a unitary transformation of the occu-
pied orbitals that fulfil some imposed localization condition.
Although all these localization schemes are conceptually dif-
ferent, they can be considered physically equivalent and
non-unique since the total energy is invariant against such
orbital rotations. The ELI is invariant against such orbital
rotations as well. From the viewpoint of the total ELI-D
topology, it can be useful to analyze the orbital representa-
tion whose pELI-D contributions depict the final ELI-D
topology in certain regions of space.
For ethylene, Foster–Boys-localized MOs display two

equivalent “banana bonds” whose pELI-D contributions are
shown in Figure 7d,e. It can be seen that the banana bond
feature of the pELI-D of these localized orbitals is indeed
recovered in the total ELI-D. In contrast, the localized orbi-
tal density topology, which shows a two-attractor structure
in the plane perpendicular to the nuclear plane (black con-
tour lines in Figure 7d), is not recovered in the total density
(black contour lines in Figure 7a).
For benzene, the electronic structure in terms of canonical

orbital diagrams, orbital densities and pELI-D contributions
is displayed in Figure 8 for all 15 occupied valence orbitals.
Detection of the bonding character from the orbital density
alone is not an easy task, whereas the pELI-D is easy to un-
derstand. Different situations can be recognized for the sep-
arate orbital contributions: multi-center bonding (2a1g, 3a1g),
two-center s bonding at the internuclear line (2e1u, 3e2g) and
displaced from it (2e2g, 1b2u, 3e1u), and p bonding with at-
tractors above and below the atomic plane (1a2u, 1e1g). The
topology of the final ELI distribution (Figure 9a) is difficult
to predict just from inspection of the diagrams. Therefore,
analysis in terms of localized orbital distributions is much
more transparent. However, besides the non-uniqueness of
the localization condition another difficulty arises for certain
electronic situations, namely near or exact localization de-
generacy of localized orbital sets.[21] Foster–Boys-localized
orbitals for benzene display an alternating pattern of single
bonds and “banana bonds” which provides an illustrative ex-
ample of a discrete doubly degenerate set. As already dem-
onstrated for ethylene, Foster–Boys localization exhibits a
preference for “banana bonds” and the localized orbitals of
the double bonds of benzene could be expected to be dis-
played in the same way. But as the double bonds are conju-
gated, only three canonical p orbitals are occupied. The
bonding pattern obtained for the nine C�C bonding local-
ized orbitals consists of alternating three localized single
bond orbitals with pELI-D attractors at the C�C bond mid-
point and six “banana bonds” with attractors above and
below the remaining three C�C contacts.

Figure 7. Canonical orbital versus localized orbital pELI-D contributions
for the C2H4 molecule: a) total ELI-D; b) pELI-D for spz orbital 3ag;
c) pELI-D for p orbital 1b1u; d) pELI-D for one localized “banana bond”
orbital front side; e) pELI-D for the second localized “banana bond” or-
bital back side. Partial pELI-D contributions are represented by a color
map, black contour lines depict the corresponding electron density.
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The pELI-D contributions of
the three separate localized or-
bitals, one single bond and two
banana-type bonds, are depict-
ed in Figure 9b. Although this
pattern resembles the KekulW
structure having D3h symmetry,
it has a different meaning here
as the total electron density and
the total ELI-D still have the
correct D6h symmetry. The
reason for this is that the tails
of the “banana bond” orbitals
account for the “missing” elec-
tron density of the localized
single bond orbitals in order to
yield a fully symmetrical elec-
tron density. Indeed, inspection
of the spread of the localized
orbitals D=< r2>�< r> 2 re-
veals that the banana bond or-
bitals have a roughly 40%
larger spread than the localized
single bond orbitals. The color
coding of the pELI-D isosurfa-
ces in Figure 9b is a measure of
the dominance of the pELI-D
(or orbital density) contribu-
tions at each point of the isosur-
face with respect to the total
ELI-D (or density). It indicates
that the pELI-D (density) frac-
tion in the region of the single
bond localized orbital decreases
quite rapidly with increasing
distance from the molecular
plane to values of only about
0.5. In contrast, for each
“banana bond” orbital this con-
tribution at first increases with
increasing distance from the
molecular plane. In Figure 9c,d
the corresponding situation is
quantified along a line in the z
direction through the bond
midpoint. The single bond
pELI-D contribution is well lo-
calized around the ELI-D at-
tractor, but its dominance rap-
idly decreases from the bond
midpoint and the tails of the
four less localized banana bond
orbitals strongly dominate
beyond jz j@1.6 bohr (85 pm).
In the total ELI-D represen-

tation the bonding between the
carbon atoms is characterized

Figure 8. Molecule C6H6: left to right: orbital diagrams, orbital densities and pELI-D orbital contributions for
each irreducible representation of all the valence orbitals.
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by a single attractor at the internuclear line between the
nearest carbon atoms. This obvious difference to ethylene
can be traced back with the help of localized orbitals. Al-
though decomposition of the total ELI-D into the above de-
scribed localized orbital contributions (Figure 9b) suffers

from the already mentioned artifacts, it is clear that the
banana bonds must be different in ethylene and benzene: in
contrast to ethylene, addition of just the two banana bond
pELI-D contributions, as shown in Figure 9d, conceals the
banana bond topology and creates an attractor in the nucle-
ar plane. This is due to the strong overlap of both the pELI-
D contributions, which can also be seen from the color-
coded pELI-D isosurface in Figure 9b. Note, the different
representation of the C�C bond in the total ELI-D is not
only a result of the longer C�C distance because an inde-
pendent calculation on ethylene using the C�C distance of
benzene reveals that the “banana bond” feature survives in
the total ELI-D. Therefore, it is interpreted as being a result
of the weaker p bond character in benzene.
So far, both the strength and the weakness of currently

used localized orbital schemes applied in bonding analysis
within the framework of orbital-resolved ELI-D analysis has
been exemplarily shown. Clearly there would be an interest
in a type of localized orbital or function that shows the
same topology as the total ELI-D itself, not only because of
the problems of non-uniqueness and localization degenera-
cy, but also because the ELI-D represents a physical mea-
sure of electron localization.[3] In contrast to those localized
orbitals currently used, this new type would in general not
be restricted to integer occupation numbers even for a
single-determinantal wavefunction as the number of ELI at-
tractors is not related in a simple way to the number of
building MOs, as exemplified above for benzene.

Penultimate shell structuring—Sc2
2+ and TiF4 : For a given

single-determinantal wavefunction, the ELI-D gives the
same topology as the ELF. However the ELF distributions
have to be re-interpreted in terms of the ELI-D in order to
enable charge decomposition analysis. In this section the
charge decomposition analysis of the ELI-D applied to Sc2

2+

and TiF4 molecules serves to discuss previously published
studies[22,23] on penultimate-shell structuring of the ELF for
transition-metal atoms. Both studies have been performed
using DFT methods and we will therefore explicitly discuss
and display our DFT results.
Within the framework of the ELF, the occurrence of pen-

ultimate-shell structuring in transition-metal species due to
participation of that shellPs genuine orbitals (i.e., atomic or-
bitals with the same main quantum number as the shell
number) in covalent bonding interactions has been discussed
in detail in relation to metal–metal interactions.[22] It was
shown for the Sc2

2+ molecule in the 1P þ
g electronic state

that an attractor in the fourth atomic shell region occurs
even though only genuine orbitals of the penultimate shell
(i.e., 3s, 3p and 3d orbitals of the third atomic shell) are
populated. This is due to the ambivalent character of the 3d
orbitals of transition metals: on the one hand they are genu-
ine orbitals of the third shell, but on the other hand they
may make significant contributions to the fourth shell as a
result of chemical bonding. With the aid of orbital-resolved
pELI-D contributions it is now possible to gain a deeper in-
sight into the problem.

Figure 9. Molecule C6H6: a) the total ELI-D using 1.86-localization do-
mains to display the C�C attractor location along the internuclear line;
b) separate pELI-D contributions for three localized orbitals: one single
bond and two banana bond contributions; the color coding depicts the
fraction of the respective orbital pELI-D (density) contribution relative
to the total ELI-D (total density) as a function of position; c) pELI-D
through the s bond (line A in Figure 9b); d) pELI-D through the mid-
points of two banana bonds perpendicular to the molecular plane (line B
in Figure 9b) reveals the “banana bond” feature is concealed upon sum-
mation of the two “banana bond” contributions, as displayed by the total
ELI-D.
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The orbital sequence beyond the atomic L shell for this
molecule is 4sg(s3s, �63.1 eV), 4su(s*3s, �62.5 eV),
5sg(s3pz, �43.2 eV), 2pu(p3px,y, �42.5 eV), 2pg(p*3px,y,
�42.1 eV), 5su(s*3pz, �40.8 eV), 3pu(p3dxz,yz, �14.2 eV) and
the eight nominal 3s and 3p MOs will be referred to below
as semicore states (sc).
The features displayed by the ELI-D (and the ELF) are a

significant structuring of the penultimate (third) shell via
two ring attractors and one additional ring attractor in the
valence region (Figure 10a). Until now, no numerical mea-
sure has been given to the structuring. We propose a struc-
turing index based on the ELI-D values of the penultimate-
shell critical points as follows. Figure 10b shows a three-di-
mensional plot of the ELI-D (the height is proportional to
the value of the ELI-D) in one molecular plane, which, as a
result of cylindrical symmetry, contains all the necessary and
sufficient information about the ELI-D topology of this mol-
ecule. The penultimate shell of each scandium atom displays

two different ring attractors A1 and A2 and three different
saddle points S1, S2 and S3. One further ring attractor A3 is
located in the valence shell and a ring-shaped saddle point
S4 connects A2 and A3. A structuring index for the penulti-
mate shell is defined for the purpose of quantitative discrim-
ination between a spherical free atom with spherical and
closed ELI-D isosurfaces at any intrashell value and those
atomic species that display open isosurfaces (e.g., with
holes, rings) for certain intrashell isosurface values. The de-
creasing sequence of intrashell critical-point ELI-D values
A1>A2>S2>S3>S1 defines the isosurface shape evolution
as the isosurface values decrease. This can be easily under-
stood from Figure 10b by considering a cutting plane paral-
lel to the molecular plane that is moved downward from
large heights (large ELI-D isosurface values) and by bearing
in mind the cylindrical symmetry: the first structure of the
third (penultimate) shell appears at height A1 where a ring
attractor for each scandium atom appears. On further lower-

Figure 10. Molecule Sc2
2+ : ELI-D and pELI-D contributions in the atomic plane depicted by color coding and either localization domains (a,c,e) or

height field representation (b,d,f): a) the total ELI-D third-shell structuring is indicated by brown 1.51-localization domains, the ring-shaped p-bonding
attractor in the fourth shell is signified by purple 1.21-localization domains; b) the total ELI-D topology: attractor Ai and saddle point Si locations;
c) pELI-D contributions for semicore orbitals employing 1.39-localization domains; d) semicore orbitalsP pELI-D topology: attractor and saddle point lo-
cations; e) pELI-D contributions from HOMO 3pu providing pdd bonding; two types of ring attractors are signaled by brown (0.57) and purple (1.18) lo-
calization domains; f) 3pu pELI-D topology: attractor locations; g) pELI-D contribution from the 3pu orbital (red line) and the total ELI-D (black line)
along a straight line from the nucleus to the ring attractor in the fourth shell (see black line in Figure 10e).
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ing the value a second ring attractor for each scandium
atom appears at value A2. For each scandium atom the two
separate rings fuse at value S2 into one ring, which still has
two holes along the internuclear line. At value S3 the neigh-
bor-directed hole closes and at S1 the backside hole closes.
From this value on, the isosurface for each scandium atomPs
penultimate shell is fully closed. In Figure 10b this would
correspond to a situation where an imagined horizontal cut-
ting plane reveals within the penultimate shell region a
closed line surrounding each scandium atom. We propose to
use the difference in the ELI-D values between the first oc-
currence of a structure A1 (i.e., the highest attractor) and
the vanishing of the last structuring feature S1 (i.e., the
lowest saddle point) as the definition of the structuring
index e=A1�S1=0.49.
The semicore pELI-D contributions (Figure 10c,d) show

qualitatively the same kind of structuring as the total ELI-
D, however, in a significantly reduced amount: the pELI-D
value A1,sc=1.41 is found for the dominant ring attractor
and for the lowest saddle point S1,sc=1.21, which gives e=

0.20. The structuring of the semicore statesP pELI-D contri-
butions is already a signature of significant orbital interac-
tion between them, which is also corroborated by the notice-
able orbital energy differences (see above) between the
bonding and antibonding semicore MOs. Noteworthy, none
of the separate ingredients of the ELI, neither the semicore
orbital density nor the pair volume function alone, displays
the type of structuring observed.
The remaining 60% of the total structuring of the penulti-

mate shell is produced by the 3d–3d interaction mediated by
the 3pu orbitals (Figure 10e,f). It can be seen that the 3pu or-
bitalsP pELI-D contributions to the structuring are negligible
at the saddle points S1,sc, S2,sc, S3,sc owing to the orbitalsP
nodal structure, whereas attractors A1,sc, A2,sc are strongly
enhanced. At position A1,sc a value of U s

D ACHTUNGTRENNUNG(3pu)=0.29 is
found, which leads to the observed final structuring.
By plotting the 3pu orbitalsP pELI-D contributions along a

line from the nucleus to the ring attractor between the
atoms in the fourth shell (Figure 10 g), it can be seen that
they increase monotonically instead of also possessing an at-
tractor in the third shell, as was initially assumed.[22] The
reason for this assumption was the hypothesis that the filled
3s3p semicore states for Sc2

2+ would not display an ELF
structuring by themselves, which is not true as we now find.
Thus, for a strongly covalent interaction the situation can be
even more extreme than thought before, namely that the
pELI-D contributions of the 3d orbitals may reach out into
the valence shell even without displaying an attractor in
their genuine shell.
A different situation is met for TiF4. In their work on the

geometries of 3d0 transition-metal molecules Gillespie
et al.[23] investigated the connection between the spatial ar-
rangement of the penultimate (third shell) ELF basins and
the arrangement of the ligands. In their discussion the terms
“core”, “core electrons”, “core basins” and “outer-core shell
basins” correspond to features of the third atomic shell. Spe-
cifically, for MFn molecules such as TiF4 and CrF6 it was em-

phasized that the ligands are situated opposite the penulti-
mate-shell basins (ligand-opposed (LO) geometry) “so that
they have a minimum interaction with the core”. Further-
more it was argued that “the Pauli repulsion between the
ligand and the core electrons localizes a pair of opposite-
spin electrons at as great a distance as possible from the
ligand, that is, in the LO positions, which corresponds in the
ELF picture to the LO core basins.” Although it is not the
scope of this paper to discuss their approach to explaining
the geometry of d0 molecules, in the present context a differ-
ent interpretation of the location of the “outer-core shell
basins” (which we prefer to term “penultimate-shell basins”
because the third atomic shell is not a true core shell for ti-
tanium) and their chemical meaning arises.
For d0 transition-metal-containing molecules, for example,

TiX4 and CrX6 (X=F, Cl, Br, …), the MOs obtained from a
HF or Kohn–Sham DFT calculation are consistent with the
picture from qualitative MO theory revealing that only
bonding metal(3d)–ligandACHTUNGTRENNUNG(s,p) orbitals are occupied. The
greater the electronegativity difference between the metal
and the ligand the more dominant is the ligand majority
state character of these orbitals. Antibonding interactions
are found through small admixtures of fully occupied metal
3s and 3p semicore orbitals in ligand majority states. A dif-
ferent situation occurs for formally dn transition-metal mole-
cules as the transition-metal majority d orbitals are occupied
and they are significantly metal–ligand antibonding depend-
ing on the degree of itineracy. In fact, it is well known that
covalency increases, for example, along the series CrF3,
CrF4

2� and CrF6, the d
0 molecule being the most covalent.[24]

All this seems to be in contrast to the interpretation of the
ELF topology given by Gillespie at al.,[23] in which ligands
were found to prefer positions opposite the ELF core basins
so that “unfavorable interactions with the metal core are
minimized” neglecting the role of covalent F–Ti interactions
completely. We therefore investigated the origin of the pen-
ultimate-shell attractor creation and location with the aid of
orbital decomposition of the total ELI-D, as illustrated with
TiF4.
TiF4 has 16 occupied valence orbitals (i.e. , without metal

semicore states) whose energy increases in the order 5a1, 4t2,
5t2, 1e, 6a1, 6t2, 1t1, all of them being classifiable as ligand
majority states. The Ti ACHTUNGTRENNUNG(3s,3p) semicore states are found in
orbitals {4a1, 3t2}, which lie about 30 and 10 eV lower than
the nominal F(2s) MOs {5a1, 4t2}.
The total ELI-D reveals a structuring of the titanium pen-

ultimate shell (Figure 11a) as described by Gillespie at al.[23]

As a measure of the structuring we use again the difference
e in the ELI-D values at critical points as described above.
The values obtained for the present calculation are about
1.65 and 1.43, respectively, which gives e=0.22. The pELI-D
computed from the TiACHTUNGTRENNUNG(3s,3p) orbitals (4a1+3t2) reveals at-
tractors and low-lying saddle points with values at the posi-
tions of ELI-D critical points of about 1.28 and 1.27, respec-
tively, yielding very small contributions to the structuring
index of about 0.01. In fact there are only two orbital sets
that give significantly structured contributions to e for the
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total ELI-D pattern (Figure 11b,c). One of them is the
pELI-D contribution from the 5a1+4t2 orbitals, which are
mostly F(2s)-like. The interaction between TiACHTUNGTRENNUNG(3s,3p) and
F(2s) can be regarded as a closed-shell interaction in which
the energetically lower nominal TiACHTUNGTRENNUNG(3s,3p) MOs {4a1,3t2} dis-
play bonding admixtures of F(2s) and the nominal F(2s)
MOs {5a1,4t2} display antibonding admixtures of TiACHTUNGTRENNUNG(3s,3p).
In sum this interaction is therefore antibonding. The pELI-
D contributions from the complete set of closed-shell inter-
action orbitals 4a1+3t2+5a1+4t2 can be considered to rep-
resent the repulsive part of the orbital interactions. As can
be seen from Figure 11d in which different pELI-D contri-
butions are displayed along the internuclear line F–Ti, these
interactions (mainly 5a1+4t2) give rise to a structuring con-
tribution to e of about 0.09, which is only about 40% of the
total structuring e=0.22 (measured at positions of the total
ELI-D attractors and saddle points utilized for e). The
pELI-D contributions from the ligand-directed 5t2 orbitals
display disynaptic attractors F–Ti and titanium penultimate-
shell attractors at the bond-opposed side at values higher
than the 5a1+4t2 ones (Figure 11c). They contribute a value
of 0.11 to the structuring index. It is these F–Ti bonding 5t2

orbitals that make the largest pELI-D contributions to the
observed strong structuring of the titanium penultimate
shell (Figure 11d). The remaining contributions (0.02) to e

arise from fluorine lone-pair-type orbitals in which the tita-
nium 3d orbitals do not significantly participate.
Note, the F–Ti disynaptic attractors are concealed in the

total ELI-D and from Figure 11d it can be deduced that al-
ready the pELI-D contributions from the titanium semicore
4a1+3t2 orbitals conceal the bonding topological feature
from 5t2 by comparing twice the value at the crossing point
of both curves in the valence region with the sum of them at
the position of the 5t2 pELI-D attractor near by. In this
sense it is the observed strong structuring of the penultimate
shell on the bond-opposed side that reflects the concealed
F–Ti bonding feature. Thus, the appearance and the loca-
tions of the titanium penultimate-shell attractors are mainly
(50%) a result of a ligand–Ti(3d) covalent interaction and
to a lesser extent (40%) a result of a closed-shell interaction
between the ligand and the titanium semicore orbitals.

Conclusion

Application of the restricted populations approach has
made it possible to reformulate the original ELI-q function-
al, defined as the number of same-spin electron pairs per
fixed charge, into a new one, the ELI-D, which is propor-
tional to the charge per fixed fraction of a same-spin elec-
tron pair. Only the latter form makes possible the simple de-
composition of the total ELI-D into directly additive, posi-
tive pELI-D contributions. In addition, it also corresponds
to that representation which is directly related to the defini-
tion of chemically meaningful basins. Decompositions into
canonical and localized orbitals for uncorrelated wavefunc-
tions and natural orbitals from correlated wavefunctions
have been discussed. Owing to the generality of the ap-
proach, similar decompositions can be made for systems
with translation symmetry, for example, with respect to k-
space-summed bands or Wannier functions.
It has been shown that this new technique of ELI-D de-

composition provides additional insights into the ELI-D and
ELF topologies from a one particle point of view. Differen-
ces in the electronic structures of two molecules, which can
be understood in terms of classical orbital mixing concepts,
can be directly related to their total ELI-D topology. The
effect of using a correlated wavefunction (CAS level) with
partial occupation of antibonding orbitals on the ELI-D top-
ology of a sensible molecule has been shown for F2. Interest-
ingly, the ELI-D topology calculated from the “Kohn–Sham
determinantal wavefunction” is closer to the CAS result
than the one determined from the Hartree–Fock wavefunc-
tion. In all other cases considered here, the results from
both single-determinantal methods are qualitatively the
same. This suggests that the ELI-D calculated from the
“Kohn-Sham determinantal wavefunction” should be con-
sidered to be at least on a similar level in terms of accuracy
as the HF one.

Figure 11. Molecule TiF4: a) the total ELI-D displaying the titanium
third-shell structuring using 1.54-localization domains; b) titanium third-
shell structuring from the pELI-D contributions of nominal F(2s) orbitals
(5a1+4t2) employing 0.08-localization domains; c) titanium third-shell
structuring from the pELI-D contributions of F–Ti bonding orbitals 5t2
employing 0.20-localization domains; d) 1D pELI-D contributions along
the internuclear line from fluorine (left side) to titanium and beyond; the
points at which contributions to the structuring index e were measured
are indicated by hollow circles. To the right of titanium, the contribution
from 5t2, which is twice as large as that from 5a1+4t2, is seen to dominate
the penultimate-shell structuring.
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To obtain a basic understanding of the formation of a cer-
tain total ELI-D topology from a collection of pELI-D con-
tributions with different topologies, the general superposi-
tion mechanism has been discussed for several examples
leading to the concealment of topological features of single
pELI-D contributions in the total ELI-D distribution.
The structuring of the penultimate shell as a signature for

the participation of its genuine orbitals in chemical bonding
has been analyzed on the basis of the pELI-D orbital contri-
butions for two transition-metal-containing molecules.
Quantification of the spatial structuring of the total ELI-D
by means of a newly defined structuring index e and analysis
of the pELI-D orbital contributions to it lead to a refine-
ment of the picture given in the literature. For the Sc2

2+

molecule the structuring of the penultimate shell is caused
not only by the true valence 3d states (60%), but through
the semicore orbitals as well (40%). Surprisingly, along r
the 3d (3pu orbitals) pELI-D contributions monotonically
cross their genuine (third shell) region and do not display an
attractor there. For the TiF4 molecule the observed titanium
penultimate-shell structuring and its ligand-opposed pattern
has been shown to be mainly caused by F–Ti bonding orbi-
tals and to a lesser extent by closed-shell interactions of the
F(2s)–Ti ACHTUNGTRENNUNG(3s,3p) type.
Finally, suitably localized orbitals and their pELI-D con-

tributions have been shown to locally yield a picture closer
to the final topology of the total ELI-D than those of single
canonical orbitals. Compared with the chemical and physical
information contained in localized orbitals, the ELI-D is the
more general quantity. It is independent of the localization
method as are the total electron density and the total
energy. This gives rise to the question as to whether there is
a possibility of constructing localized orbitals or functions
using ELI-D topological information in the localization con-
dition. Because a direct relationship between the ELI-D and
electron localizability within the framework of event proba-
bilities is known to exist,[3] this could give rise to really in-
trinsically localized orbitals or functions as a refined ingredi-
ent for the analysis of electronic interactions in molecules
and solids.

Appendix

Relationship between the ELI-D and ELF : To elucidate the connection
between the ELI-D and ELF as defined by Becke and Edgecombe,[1] the
Fermi hole curvature g(r) for the case of a time-independent HF wave-
function has to be supplied. In the case of a time-independent approxi-
mate single-determinantal wavefunction, g(r) simplifies[2,6] to Equa-
tion (12) with orbitals fi(r). At this level of theory the ELI-D from Equa-
tion (8) is given by Equation (13).

gðrÞ ¼
Xocc,s
i<j

j�iðrÞr�jðrÞ��jðrÞr�iðrÞj2

¼ 1sðrÞ
� Xocc,s

i

jr�iðrÞj2�
1
4
½r1sðrÞ
1sðrÞ

� ð12Þ

U s
D,HFðrÞ ¼

�
121sðrÞ

8=3

1sðrÞ
� Pocc,s

i
jr1iðrÞj2� 1

4
½r1s ðrÞ2
1s ðrÞ

�
�3=8

¼
�

121sðrÞ
5=3

Pocc,s
i

jr1iðrÞj2� 1
4
½r1s ðrÞ2
1s ðrÞ

�3=8 ð13Þ

The expression after the second identity provides a direct link to the
kernel of the electron localization function (ELF) defined by Becke and
Edgecombe[1] for a HF wavefunction. The ELF formula as defined by
Becke and Edgecombe for the same-spin component of the wavefunction
is built from a kernel cELF(r), which contains all the relevant information,
and a mathematical scaling procedure applying a Lorentzian-type scaling,
which serves to give the ELF function h(r) desirable shape and values
bound between 0 and 1 [Eq. (14)].

hðrÞ ¼ 1

1þ
�
Ds ðrÞ

D
0
sðrÞ

�2 ¼
1

1þ ½cELFðrÞ2 ð14Þ

½cELFðrÞ�1 ¼ 2
5=3CF1

5=3
s ðrÞPocc,s

i
jr�ij2� 1

4
½r1s ðrÞ2
1s ðrÞ

ð15Þ

Comparison of the ELF kernel [Eq. (15)] with the expression for the
ELI-D in Equation (13) reveals that the numerical constant 2

5=3CF (the
Fermi constant CF=

3
10ACHTUNGTRENNUNG(3p

2)
2=3) appearing in the original definition of the

ELF derived from the electron gas reference is not present in the ELI-D.
Still, both quantities display the same topology. The fact that the ELI-D
has a unique and simple physical meaning and that it is inherently de-
fined for a fully correlated wavefunction as well are its decisive advantag-
es. In contrast, cELF(r) is simply the ratio between two same-spin condi-
tional pair probability density curvatures, namely Ds(r) of the actual
system at point r and D0

s(r) of the homogeneous electron gas with the
same density as at point r of the actual system.

At this point it is important to recall BeckePs intention of placing the
ELF kernel into the denominator of his definition of the ELF:[1] the ELF
kernel, interpreted as “a measure of electron localization”, displays in-
verse behavior with respect to “electron localization”. High values of
cELF(r) are associated with low localizability and vice versa. Therefore,
the ELF has been defined to show the topology of [cELF(r)]�1. Although
it may be regarded as trivial and even as an arbitrary step at first glance,
for the topological analysis of ELF it was an important step. Upon invert-
ing the ELF kernel all critical points remain at their positions but their
topological properties change: a local maximum (attractor) of [cELF(r)]�1

becomes a local minimum (repeller) of cELF(r) and vice versa. Therefore
the basins of cELF(r) and [cELF(r)]�1 are completely different. From expe-
rience with topological analyzes of the ELF for many chemical systems it
is clear that the basins of [cELF(r)]�1 have a chemical meaning, but those
of cELF(r) do not. Within the framework of the ELI they directly corre-
spond to the ELI-D and it is therefore this quantity that is analyzed
throughout this contribution.

Is an analogous charge decomposition of the ELF possible? The relation-
ship between the ELI-D at a time-independent HF level and the ELF is
evident from a comparison of Equations (13) and (15). In contrast to the
pair-restricted charge distribution U s

D(r), the decomposition of c
ELF(r) or

[cELF(r)]�1 into separate orbital contributions is not uniquely fixed. Never-
theless, within the pseudopotential and effective core potential approach,
the ELF for only the valence electrons was quite often calculated in the
early ELF days, for example, by Savin et al.[25] As an approximate expres-
sion for the ELF in the valence region Equation (16) has been used.
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CF

� Pval:el:
i

1iðrÞ
�5=3
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jr�iðrÞj2� 1
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½r
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i

1iðrÞ2
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i
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The validity of this procedure in the sense of an approximation to the all-
electron ELF in the valence region has been discussed in ref. [26]. Ac-
cording to that study, a good approximate valence-only ELF can be ex-
pected only when both the valence and the core orbitals do not have
large contributions in the same regions of space. In spite of this, the same
scheme was later utilized by Santos et al. in order to extract selected p

orbital contributions.[27] As the s and p contributions are large in the
same regions of space it is clear that such a procedure is in fact no longer
related to the ELF. It is evident that separate s and p contributions de-
fined in this way are not additive even for the kernel of the ELF. Further-
more, single orbital contributions of, for example, the p orbital of C2H4

cannot be analyzed with that decomposition because the denominator of
the inverse kernel is equal to zero in this case (cf. Equation (16) after the
second identity). In contrast, complete orbital decomposition of ELI-D
for C2H4 is possible and it is explicitly shown in the examples above. Fur-
thermore, from Equation (11) the calculation of the valence electronsP
contributions to the total ELI-D is physically transparent: it is simply the
sum of the orbital densities of all the valence electrons times the scaled
pair volume function calculated from all electrons. This is shown and
used in the examples above for the argon atom and for molecules of N2

and F2.

To achieve an orbital decomposition of the inverse ELF kernel [cELF(r)]�1

similar to Equation (11) with additive contributions would involve the
application of Equation (17) which involves splitting the homogenous
electron gas expression in the numerator into two density-dependent
parts only one of which is then decomposed into orbital contributions,
whereas the term in the denominator, which is interpreted to contain the
localization information of the system,[1] is not decomposed at all. Within
the framework of the ELF, such a procedure is hardly justified and it is
no surprise that this orbital decomposition scheme has not even been
thought of. This clearly demonstrates the completely different approach
of the pair-restricted charge distribution ELI-D, which is physically
meaningful and transparent. The orbital decomposition given by Equa-
tion (11) is only justified within the restricted populations approach,
giving rise to the same-spin pair-restricted charge population. Decompo-
sition of the ELF according to Equation (17) would correspond to a rein-
terpretation of BeckePs ELF formula in the sense of the pair-restricted
charge (i.e., ELI-D), which would still not be consistent, however, be-
cause the Fermi constant CF has no justification there.

½cELFðrÞ�1 ¼ CF1
5=3
s ðrÞPocc,s

i
jr�iðrÞj2� 1

4
½r1s ðrÞ2
1s ðrÞ

¼
Xocc,s
i

1iðrÞ
CF1

2=3
s ðrÞPocc,s

i
jr�iðrÞj2� 1

4
½r1s ðrÞ2
1s ðrÞ

ð17Þ

Recently, a reinterpretation of BeckePs ELF, valid also for the fully corre-
lated wavefunction, was claimed by Matito et al.[28] The kernel of this
function is the so-called spin-pair composition function cp, which is de-
fined by Silvi[29] as the scaled ratio Ds(r) [Eq. (18)] between the parallel
spin-pair concentration N̄k(r) with a finite arbitrary sampling volume
around the reference point r given by Equation (19) and the “pair con-
centration of a single pair” 1

2N̄(r)
2, which is obtained from the “number

of antiparallel pairs in the limit of non-interacting electrons in a singlet
state”[29] [Eq. (20)].

cpðrÞ ¼ DsðrÞ�NðrÞ�
2=3 ¼ 2

�NkðrÞ
�NðrÞ2

�NðrÞ�2=3 ¼ 2
�NkðrÞ
�NðrÞ8=3

ð18Þ
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Z
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V
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1bb
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1
2
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Taylor expansion of 1ss
s ACHTUNGTRENNUNG(r1,r2) in Equation (19) for N̄k(r) and by assuming

Equation (21), which is used to eliminate the dependence of N̄k(r) on the
arbitrary sampling volume V, finally yields Equation (22).

�NðrÞ � 1ðrÞV ð21Þ

cpðrÞ ¼
r2
s1

aa
2 ðr,r þ sÞjs¼0 þr2

s1
bb
2 ðr,r þ sÞjs¼0

31ðrÞ8=3
ð22Þ

Equation (22) was later put, in analogy with the ELF, into the Lorentzian
form 1/ ACHTUNGTRENNUNG[1+cp(r)

2], including a scaling with the Fermi constant CF.
[28]

From Equations (18) and (22) it is evident that an orbital decomposition
of the inverse kernel [cp(r)]

�1 in a similar way to the ELI-D [Eq. (11)] is
not possible for the same reason as for the ELF: conceptually, there is no
separate quantity 1(r) that can be factorized out of the numerator of
[cp(r)]

�1 and be treated differently from the remaining 1(r)
5=3 term.
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